
Seminar
Information processing

in living systems

Dr. Jürgen Pahle

UdS, Saarbrücken

27.4.2012



Information theory

● Claude E. Shannon (1916-2001)
“Mathematical Theory of Communication” (1948)

● Information theory can answer questions about limits of 
faithful information transfer over a given (noisy) channel etc.
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Signal transduction via Calcium

Nucleotides (ATP, UTP)
Hormones (angiotensin II, 

vasopressin etc.)

bow tie

structure

Target proteins (calmodulin, 
phosphorylase b kinase, etc.)

Transcription factors 
(NF-κB, etc.)

Ca2+-signal

calcium code?



How to quantify information?

Information content of

an event
→ uncertainty
(negative log of probability)

Average uncertainty of all possible events
→ so-called entropy

Information = decrease in uncertainty



Weather example

50%

Probability(sunny) = ½
→ Uncertainty(sunny) = 1.0

On average (entropy of the weather)
→ 1.0 [bit/day]

50%
Probability(rainy) = ½

→ Uncertainty(rainy) = 1.0



Weather example

100%

Probability(sunny) = 1.0
→ Uncertainty(sunny) = 0.0

On average (entropy of the weather)
→ 0.0 [bit/day]

0%
Probability(rainy) = 0

→ Uncertainty(rainy) = 0.0 per convention



Weather example

80%

Probability(sunny) = 0.8
→ Uncertainty(sunny) = 0.32

On average (entropy of the weather)
→ 0.64 [bit/day]

20%
Probability(rainy) = 0.2

→ Uncertainty(rainy) = 2.32



Weather example (London)

220/365

Probability(sunny) = 0.603
→ Uncertainty(sunny) = 0.73

On average (entropy of the weather in London)
→ 0.97 [bit/day]

145/365
Probability(rainy) = 0.397

→ Uncertainty(rainy) = 1.33



Weather example

p%
Probability(sunny) = p

→ Uncertainty(sunny) = - log2(p)

On average (entropy of 
the weather) [bit/day]

(1-p)%
Probability(rainy) = 1-p

→ Uncertainty(rainy) = - log2(1-p)



Weather example

Probability(sunny) = 0.25
→ Uncertainty(sunny) = 2.0

On average (entropy of the weather)

→ 2.0 [bit/day]

Probability(rainy) = 0.25
→ Uncertainty(rainy) = 2.0

Probability(thunderstorm) = 0.25
→ Uncertainty(thunderstorm) = 2.0

Probability(cloudy) = 0.25
→ Uncertainty(cloudy) = 2.0



H(X)

H(Y)

H(X|Y)

H(Y|X)
I(X;Y)

H(X,Y)

Entropy and Mutual information

H (X )=−∑
x

p (x )log p(x)

D ( p∥q)=∑
x

p (x)log
p (x)
q(x)

I (X ;Y )=∑
x , y

p (x , y )log
p (x , y )
p(x) p ( y)

Entropy

Relative Entropy / 
Kullback-Leibler Divergence

Mutual 
Information

"Reduction of uncertainty about X 
due to the knowledge of Y"



Weather dynamics

0.75 0.25

0.5 0.5
⅔

⅓



Markov process

● Markov process can not remember former states, only 
current state determines future

● Markovian modeling is used in a variety of fields:
● Communication:

Telephone system (Hidden Markov models)

● Hard disks

● Language recognition

● PageRank algorithm of Google

● Biological modeling: Population dynamics, etc.

● Games of chance (chutes and ladders)



Information/Entropy-rate

The information gained by observing tomorrow's weather, 
when the today's weather is known: 

Entropy(tomorrow's weather | today's weather)
→ conditional probabilities

In our example:

Entropy(tomorrow's weather) = 0.92 [bit/day]

Entropy(tomorrow's weather | today's weather) = 0.87 
[bit/day]



Weather dynamics

high 0.9 0.1

low 0.6 0.4

high 1 0

low 0 1



Weather dynamics (London)

high 0.9 0.1

low 0.6 0.4

high 1 0

low 0 1

1.3.2010, 12:00: 
1012 hPa → slightly low



Information provided by the barometer

Information =

Uncertainty (without barometer)
minus

Uncertainty (with barometer)

Assumption Probability(high) = Probability(low) = 0.5



Information provided by the barometer

Information =

Uncertainty (without barometer)
minus

Uncertainty (with barometer)

Assumption Probability(high) = Probability(low) = 0.5

Information = 0.39 [bit/day]



Transfer Entropy

Quantifies the information transferred by calculating how 
much uncertainty is lost (or information gained) about a 
dynamic stochastic process, when the value of the driving 
signal is known

Kullback-Leibler-form
T. Schreiber (2000), Phys. Rev., 85(2), 461-4

T J → I=∑ p (in+1 , in
(k ) , jn

(l)) log (
p(in+1∣in

(k ) , jn
(l))

p(in+1∣in
(k ))

)



How-To (Biochemical modeling)
● Compartments (nucleus, cytosol, ...)
● Species (proteins, small molecul., ions,...)
● Reactions (decay, ...)
● Kinetics (velocity of reactions)

Simulation:
● How does the system change over time?

Analysis of the model:
● Which parts influence the behavior most?
● Which states are stable (steady state, oscillations)?



Reasons for stochastic modeling
• Small particle numbers on single cell level (e.g. signal 

transduction, gene expression)
→ discreteness of the system, random fluctuations

• Bi-stable systems:

• Stochasticity as an important property of the system:
noise-sustained oscillations, stochastic resonance, etc.

• Extinction of species
• Rare events images: commons.wikimedia.org

Calico cat

λ phage



Basis of the Stochastic Approaches

a  x⋅dt=c⋅h  x⋅dt

A

B

r(B)

number of different
combinations of

substrate particles

specific probabilistic reaction rate
product of

probability of collision
(~ average relative speed * collision 

cross-section area / volume) and
 

probability of reaction after collision
(collision energy larger than threshold)



Chemical Master Equation (CME)

•     is stoichiometric vector of reaction j
• More important for the simulation methods is the so-called 

Reaction Probability Density Function
• When will the next reaction take place?
• Which reaction will it be?

∂ P x ,t∣x0 , t0
∂t

=∑ j=1

M
[a j x− j∗P x− j , t∣x0 , t0−a j x ∗P x ,t∣x0 , t0]

P ,  ={a exp−a0   if 0∞∧=1, , M
0 otherwise }

 j

“probability flux”
to x from other states

“probability flux”
from x to other states



Stochastic Simulation (Gillespie 1976)

1)Calculate probabilities for all reactions
2)Calculate stochastic time step t (exponentially 

distributed, sum of all reaction prob.)
3)Monte Carlo Simulation: The reaction to be realized is 

chosen by “playing roulette”,
discrete distribution 

4)Instantiate the reaction: Change particle numbers 
according to stoichiometry

= 1
a0

ln r1

∑=1

−1 a

a0

r2∑=1

 a

a0



Gα
PLC

ER

Signal transduction via Ca2+-ions

Ca2+

protein



Calcium dynamics (simulated deterministically)

spiking



Calcium dynamics (simulated)

spiking bursting

overstimulationirregular/chaotic



Presentations & Write-ups

• What is/are the main question/s of the article?
• Have these questions been adequately answered?
• Summarize and explain the most important steps taken in 

the approach.
• Are there errors, inconsistencies, omissions?

• Would there be alternative approaches? Which ones? Why 
did the authors choose theirs?

• If approximations are involved, under which circumstances 
are they valid? When do they break?

• How does this work fit into the bigger field of research? Do 
the authors refer to closely related work?

• ...



Literature

Information Theory
• Cover and Thomas (1991) Elements of Information 

Theory. John Wiley & Sons, Inc., ISBN 0-471-06259-6
• Shannon (1948) A Mathematical Theory of 

Communication. Bell System Technical Journal 27:379-
423, 623-656

(Computational) Systems Biology
• Klipp et al. (2009) Systems Biology - A Textbook. WILEY-

VCH, ISBN 978-3-527-31874-2



To agree on...

• Presentation days (14th and 15th June 2012, from 14:30)
• Opponents assignments

• Pahle 2008 (Thorsten Klingen): Ugur Kira, Abirami Veluchamy
• Gourevitch 2007 (Zeinab M.P.Aghdam): Thorsten Klingen, Pramod 

Kaushik Mudrakarta
• Niven 2007 (Azim Dehghani Amirabad): Thorsten Klingen, Zeinab 

M.P.Aghdam
• Staniek 2008 (Ugur Kira): Zeinab M.P.Aghdam, Azim Dehghani 

Amirabad
• Ziv 2007 (Pramod Kaushik Mudrakarta): Daria Gaidar, Ugur Kira
• Tkacik 2008 (Abirami Veluchamy): Azim Dehghani Amirabad, Daria 

Gaidar
• Waltermann 2011 (Daria Gaidar): Abirami Veluchamy, Pramod 

Kaushik Mudrakarta
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